This 2-drug combo shrinks breast cancer tumors

A pink light trail in the shape of the breast cancer awareness pink ribbon

Researchers have discovered a new targeted combination drug therapy that efficiently reduces tumor growth in metastatic breast cancer.

Their findings could lead to the development of a new first line targeted therapy for the treatment of triple negative breast cancer (TNBC), with the prospect of rapidly transitioning to clinical trials in humans.

Breast cancer is the leading cause of cancer death in women around the world, responsible for 1,700 deaths every day. Although the vast majority of breast cancers are treatable, the most aggressive subtype—TNBC—has a high recurrence rate, a high potential for metastasis, and shows resistance to conventional treatments, leading to poor prognosis and survival outcomes.

“There is no targeted therapy for TNBC. Chemotherapy treatment can even enrich these tumors in cancer stem cells and be detrimental to the patient, as we have shown in a previous study,” says Jean-Jacques Lebrun, senior scientist in the Cancer Research Program at the Research Institute of McGill University Health Centre (RI-MUHC) and principal investigator of the study. “Filling that huge medical gap was our motivation in conducting this study.”

While most breast cancers have one of three main receptors that are like entrance gates for treatments—estrogen, progesterone, and a protein called human epidermal growth factor (HER2)—TNBC has none, thus the name triple negative breast cancer.


 Get The Latest By Email

Weekly Magazine Daily Inspiration

Using state-of-the-art technologies such as gene editing and genome-wide molecular approaches, the team identified two pathways which they could target in a therapeutic strategy.

Aggressive and deadly triple-negative breast cancer

In the first part of the study, researchers identified about 150 genes that could either induce tumor formation (oncogenes) or prevent tumor formation (tumor suppressors).

To achieve this, they screened the whole human genome—all 20,000 genes—in a preclinical mouse model of TNBC. Using the gene editing technique CRISPR/Cas9, they cut each of the genes individually and induced their loss of function—a process called gene knock out. Very few studies have used these forward genetic in vivo CRISPR screens at the genome-wide scale so far.

The team then showed that in TNBC an oncogenic pathway (MTOR) is activated whereas a tumor suppressor pathway (HIPPO) is inhibited, which could possibly explain why those tumors are so aggressive and deadly.

To establish the therapeutic relevance of their findings, the team took the investigation one step further.

“By disrupting the function of all genes, one by one, we found two major pathways that are involved in the regulation of the tumor development,” says Meiou Dai, a research associate in the Lebrun Lab at the RI-MUHC and first author of the study, published in Nature Communications.

“We thought, if we take an existing drug that can block the oncogenic pathway and add one that can promote the tumor suppressor pathway, we could have an effect in terms of blocking cancer formation.”

Shrinking tumors

The researchers looked at existing drugs that could target these pathways and made experiments in vitro and in vivo. As a result, they found two efficient drugs: Torin1, a second generation drug known to block the MTOR pathway, and verteporfin, a drug normally used for a retina eye disease that can mimic the HIPPO pathway.

They mixed the two drugs together and used mathematical models and a pharmacological approach to define whether the two drugs were acting independently or in synergy.

“What we found was beyond our expectations: the two drugs acted in a synergistic manner and efficiently reduced tumor growth in vitro as well as in vivo, using cell- and patient-derived xenograft models of TNBC,” says Lebrun, who is also a professor in the McGill department of medicine.

In the study, the researchers noticed that verteporfin induced cell death by apoptosis—a very classical cell death mechanism. Torin1, on the other hand, induced cell death through a non-apoptotic mechanism called macropinocytosis, an endocytic process also referred to as “cell drinking,” which allows all nutrients and fluids outside of the cell to be incorporated into the cell, eventually leading to implosion of the cell and catastrophic cell death.

Macropinocytosis is a natural mechanism that cancer cells use for their own advantage, to grow bigger and faster,” explains Dai. “We realized that when we used the two drugs together, Torin1 utilizes this mechanism to favor the incorporation of verteporfin into the cell thereby increasing the later apoptotic cell death effects. It is this synergistic process that allows the two drugs to efficiently inhibit tumor formation.”

The results of this comprehensive study define a new approach to efficiently prevent tumor formation and reduce the tumor burden, i.e., the size of a tumor, or the amount of cancer in the body, by simultaneously targeting pro-oncogenic and tumor suppressor pathways. The proposed targeted combination therapy for TNBC patients will help fill an important medical gap in the metastatic breast cancer field.

Finally, this study underscores the power and robustness of in vivo CRISPR genome wide screens in identifying clinically relevant and innovative therapeutic modalities in cancer.

The Canadian Institutes for Health Research (CIHR) funded the work.

Source: McGill University

About The Author

Fabienne Landry-McGill

books_health

This article orginally appeared on Futurity

You May Also Like

AVAILABLE LANGUAGES

English Afrikaans Arabic Bengali Chinese (Simplified) Chinese (Traditional) Dutch Filipino French German Hindi Indonesian Italian Japanese Javanese Korean Malay Marathi Persian Portuguese Russian Spanish Swahili Swedish Tamil Thai Turkish Ukrainian Urdu Vietnamese

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

MOST READ

Study shows AI-generated fake reports fool experts
Study shows AI-generated fake reports fool experts
by Priyanka Ranade, PhD Student in Computer Science and Electrical Engineering, University of Maryland, Baltimore County
A health-care worker performs a COVID swab test on a patient.
Why are some COVID test results false positives, and how common are they?
by Adrian Esterman, Professor of Biostatistics and Epidemiology, University of South Australia
wskqgvyw
I'm fully vaccinated – should I keep wearing a mask for my unvaccinated child?
by Nancy S. Jecker, Professor of Bioethics and Humanities, University of Washington
image
Parkinson's disease: we don't have a cure yet but treatments have come a long way
by Chrystalina Antoniades, Associate Professor of Neuroscience, University of Oxford
How Injuries Change Our Brain And How We Can Help It Recover
How Injuries Change Our Brain and How We Can Help It Recover
by Michael O'Sullivan, The University of Queensland
How virus detectives trace the origins of an outbreak – and why it's so tricky
How virus detectives trace the origins of an outbreak – and why it's so tricky
by Marilyn J. Roossinck, Professor of Plant Pathology and Environmental Microbiology, Penn State

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.